Una tradición muy persistente con base documental en Vitrubio, Plutarco, Diógenes Laercio, Ateneo y Proclo, atribuye el Teorema de Pitágoras al propio Pitágoras. Pero los descubrimientos arqueológicos de los restos de las culturas de Mesopotamia, Egipto, India y China, han revelado que estas civilizaciones conocían aspectos del Teorema de Pitágoras muchos siglos antes que este sabio. Las referencias prehelénicas al Teorema no contienen, sin embargo, pruebas del mismo, mientras que es generalizada la creencia de que fue Pitágoras el primero en proporcionarnos una demostración lógica del Teorema, lo que hará justo que éste haya pasado a la historia con su nombre.
Muchos historiadores admiten que la demostración de Pitágoras se basaría en su propia Teoría de las Proporciones –imperfecta por aplicarse sólo a cantidades conmensurables–, de modo que la prueba de Pitágoras podría haber sido alguna de las dos siguientes :
Sea ABC un triángulo rectángulo, con el ángulo recto en A, y sea AD perpendicular al lado BC. Según Euclides VI.8 los triángulos DBA y DAC son ambos semejantes con el triángulo ABC y semejantes entre s
Prueba 1. De la semejanza de los triángulos ABC, DBA y DAC resulta:
BA/BD = BC/BA , AC/CD = BC/AC (Euclides VI.4). De aquí se hayan las expresiones del llamado «Teorema del cateto»: BA2 = BD·BC , AC2 = CD·BC, que al sumarlas, se obtiene: BA² + AC² = (BD+CD)·BC = BC·BC = BC²,
es decir: BA2 + AC2 = BC2.
En esta demostración del Teorema de Pitágoras –basada en el Teorema del cateto–, se descompone, de forma implícita, el cuadrado sobre la hipotenusa, BCIK,en dos rectángulos, BDJK y DCIJ, cada uno de ellos con el mismo área que cada uno de los cuadrados construidos sobre los catetos –el rectángulo BDJK de área como el cuadrado ABEF sobre el cateto AB –ya que BA2 =BD·BK, y el rectángulo DCIJ de área como el cuadrado ACHG sobre el cateto AC –ya que AC2 = CD·CI–.
Debemos observar que la figura exhibida forma parte de la figura que utiliza Euclides en su demostración del Teorema de Pitágoras en la Proposición I.47 de Los Elementos de Euclides, y además, puntualizar que variantes de esta prueba se encuentran en el hindú Bhaskara, en Leonardo de Pisa (Fibonacci)y en Wallis.
Prueba 2.
De la semejanza de los triángulos ABC, DBA y DAC resulta, según Euclides VI.19 («la razón entre las áreas de los triángulos semejantes será igual al cuadrado de la razón de semejanza»): DBA/AB² = DAC/AC² = ABC/BC².
Pero de las propiedades de la suma de proporciones (Euclides 5.12) resulta:
ABC/BC2 = DBA/AB2;= DAC/AC2;= (DBA+DAC) / (AB2+AC2) = ABC / (AB2+AC2) por tanto se tiene: AB2+AC2 = BC2.
Como vemos, estas pruebas del Teorema de Pitágoras mantienen su plena vigencia en los libros de texto de matemáticas escolares elementales.
Quizá ningún teorema de la amplia Matemática haya recibido tantas demostraciones diversas como el Teorema de Pitágoras. De todas ellas la más famosa es sin duda la realizada por Euclides en la Proposición I.47 de Los Elementos. En la Edad Media esta Proposición se la consideraba la base de toda sólida formación matemática. En algunos centros docentes además de exigir, para obtener el grado de maestro, un profundo conocimiento del Teorema, se obligaba a exhibir una nueva y original demostración del mismo, por eso el Teorema de Pitágoras alcanzó la honrosa designación de «Magister matheseos». Este hecho y la gran significación del teorema explica la razón de las innumerables demostraciones que los matemáticos y no matemáticos de todas las épocas y personajes tan diversos como filósofos, monjes, políticos, juristas, ingenieros y artistas, han encontrado del más famoso Teorema de la Geometría.
El Teorema de Pitágoras aparece por doquier en la Matemática. Es la base de multitud de teoremas geométricos, de la trigonometría y de la Geometría analítica. La ecuación pitagórica x2+y2=z2 es la ecuación de la circunferencia, la base de la fórmula cos2a+sen2a=1 y el origen del Análisis indeterminado de Diofanto y Fermat. También pudo ser el germen del dramático alumbramiento de la inconmensurabilidad en la Escuela pitagórica.
La aparición del Teorema de Pitágoras en el horizonte histórico cultural pero también en el horizonte escolar señala el primer salto intelectual entre los confines de la especulación empírica y los dominios del razonamiento deductivo. Así pues, estamos ante un auténtico paradigma para la Matemática y sobre todo para la Educación matemática. Por esto y por su universalidad el Teorema de Pitágoras pertenece al imaginario cultural de casi todos los pueblos.